Planetesimal growth in turbulent discs before the onset of gravitational instability
نویسنده
چکیده
It is difficult to imagine a planet formation model that does not at some stage include a gravitationally unstable disc. Initially unstable gas-dust discs may form planets directly, but the high surface density required has motivated the alternative that gravitational instability occurs in a dust sub-layer only after grains have grown large enough by electrostatic sticking. Although such growth up to the instability stage is efficient for laminar discs, concern has mounted as to whether realistic disc turbulence catastrophically increases the settling time, thereby requiring additional processes to facilitate planet formation on the needed time scales. To evaluate this concern, we develop a model for grain growth that accounts for the influence of turbulence on the collisional velocity of grains and on the scale height of the dust layer. The relative effect on these quantities depends on the grain size. The model produces a disc-radius dependent time scale to reach a gravitationally unstable phase of planet formation. For a range of dust sticking and disc parameters, we find that for viscosity parameters α ≤ 10, this time scale is short enough over a significant range in radii R that turbulence does not catastrophically slow the early phases of planet formation, even in the absence of agglomeration enhancement agents like vortices. Subject headings: accretion discs planetary systems: formation planetary systems: protoplanetary discs
منابع مشابه
Long-Lived Planetesimal Discs
We investigate the survival of planetesimal discs over Gyr timescales, using a unified approach that is applicable to all Keplerian discs of solid bodies – dust grains, asteroids, planets, etc. Planetesimal discs can be characterized locally by four parameters: surface density, semimajor axis, planetesimal size and planetesimal radial velocity dispersion. Any planetesimal disc must have survive...
متن کاملPlanetesimal Formation through Gravitational Instability
Introduction. Two prevailing processes of planetesimal formation are proposed. The first is the gravitational instability of a dust layer (e.g., Safronov 1969, Hayashi 1972, Goldreich and Ward 1973). The second is the growth through the mutual sticking of dust particles in a turbulent nebula (Weidenschilling and Cuzzi 1993, Stepinski and Valageas 1997). We consider the first one in this study. ...
متن کاملA Novel Indicator to Predict the Onset of Instability of a Gravitational Flow on a Slope
In order to present a quantitative indicator for the onset of instability, in this paper, the critical points of a stratified gravitational flow on a slope are found and analyzed. These points are obtained by means of the solution of the two-dimensional Navier-Stokes equations via the standard Arakawa-C finite-difference method. Results show that in the marginal Richardson numbers, the critical...
متن کاملPlanetesimal Formation with Particle Feedback
Proposed mechanisms for the formation of km-sized solid planetesimals face long-standing difficulties. Robust sticking mechanisms that would produce planetesimals by coagulation alone remain elusive. The gravitational collapse of smaller solids into planetesimals is opposed by stirring from turbulent gas. This proceeding describes recent works showing that “particle feedback,” the back-reaction...
متن کاملPlanetesimal Formation without Thresholds. Ii: Gravitational Instability of Solids in Turbulent Protoplanetary Disks
We show that small solids in low mass, turbulent protoplanetary disks collect into self-gravitating rings. Growth is faster than disk lifetimes and radial drift times for moderately strong turbulence, characterized by dimensionless diffusivities, αg . 10 —10 when particles are mm-sized. This range reflects a strong dependance on disk models. Growth is faster for higher particle surface densitie...
متن کامل